Please disable your Ad Blocker in order to interact with the site.

Developing a way to create hydrogen fuel from water is a “Holy Grail” of alternate fuel development. Many consider Hydrogen fuel cells the perfect pollution-free alternative to fuel automobiles. In these cells Hydrogen is consumed by a pollution-free chemical reaction, not combustion. So the fuel cell simply combines hydrogen and oxygen chemically to produce electricity, water, and waste heat. Nothing else. hydrogen is the most abundant element in the universe, it would take millennia to run out.

Up until now the major problem with creating hydrogen fuel cells is the chemical process needed to separate the hydrogen and the oxygen used as much energy as it produced. The Weizmann Institute in Israel may have found a way to solve that problem:

Israeli Science Breakthrough Extracts Fuel from Water

by Baruch Gordon
(IsraelNN.com) Among the most important challenges facing science today is designing an efficient system for splitting water into hydrogen and oxygen. The ability to do so will introduce hydrogen into the market as a clean, sustainable fuel. But man-made systems for getting to the root of water that exist today are very inefficient and often require additional use of sacrificial chemical agents.

Now, a unique approach developed by Prof. David Milstein and colleagues of the Weizmann Institute’s Organic Chemistry Department, provides important steps in overcoming this challenge. Their research demonstrated a new mode of bond generation between oxygen atoms and even defined the mechanism by which it takes place. It is the generation of oxygen gas by the formation of a bond between two oxygen atoms originating from water molecules that proves to be the bottleneck in the water splitting process. Their research has recently been published in Science.

Nature, by taking a different path, has evolved a very efficient process: photosynthesis, carried out by plants. Photosynthesis is the source of all oxygen on earth. Although there has been significant progress towards the understanding of photosynthesis, just how this system functions remains unclear. Vast worldwide efforts have been devoted to developing artificial photosynthetic systems based on metal complexes that serve as catalysts, but with little success. (A catalyst is a substance that is able to increase the rate of a chemical reaction without getting used up.)

The new approach that the Weizmann team has recently devised is divided into a sequence of reactions, which leads to the liberation of hydrogen and oxygen in consecutive thermal- and light-driven steps, mediated by a unique ingredient – a special metal complex that Milstein’s team designed in previous studies. Moreover, the one that they designed – a metal complex of the element ruthenium – is a “smart” complex in which the metal center and the organic part attached to it cooperate in the cleavage of the water molecule.

The team found that upon mixing this complex with water the bonds between the hydrogen and oxygen atoms break, with one hydrogen atom ending up binding to its organic part, while the remaining hydrogen and oxygen atoms (OH group) bind to its metal center.

This modified version of the complex provides the basis for the next stage of the process: the “heat stage.” When the water solution is then boiled, hydrogen gas is released from the complex – a potential source of clean fuel – and another OH group is added to the metal center.

“But the most interesting part is the third ‘light stage,’” says Milstein. “When we exposed this third complex to light at room temperature, not only was oxygen gas produced, but the metal complex also reverted back to its original state, which could be recycled for use in further reactions.”

These results are even more remarkable considering that the generation of a bond between two oxygen atoms promoted by a man-made metal complex is a very rare event, and it has been unclear how it can take place. Yet Milstein and his team have also succeeded in identifying an unprecedented mechanism for such a process. Additional experiments have indicated that during the third stage, light provides the energy required to cause the two OH groups to get together to form hydrogen peroxide (H2O2), which quickly breaks up into oxygen and water. “Because hydrogen peroxide is considered a relatively unstable molecule, scientists have always disregarded this step, deeming it implausible; but we have shown otherwise,” says Milstein.

Moreover, the team has provided evidence showing that the bond between the two oxygen atoms is generated within a single molecule – not between oxygen atoms residing on separate molecules, as commonly believed – and it comes from a single metal center.

Discovery of an efficient artificial catalyst for the sunlight-driven splitting of water into oxygen and hydrogen is a major goal of renewable clean energy research. So far, Milstein’s team has demonstrated a mechanism for the formation of hydrogen and oxygen from water, without the need for sacrificial chemical agents, through individual steps, using light. For their next study, they plan to combine these stages to create an efficient catalytic system, bringing those in the field of alternative energy an important step closer to realizing this goal.

Participating in the research were former postdoctoral student Stephan Kohl, Ph.D. student Leonid Schwartsburd and technician Yehoshoa Ben-David all of the Organic Chemistry Department, together with staff scientists Lev Weiner, Leonid Konstantinovski, Linda Shimon and Mark Iron of the Chemical Research Support Department.The Weizmann Institute of Science in Rehovot, Israel, is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Become a Lid Insider

Sign up for our free email newsletter, and we'll make sure to keep you in the loop.

Send this to friend